Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(15): e15778, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537145

RESUMO

We recently reported that strong activation of the optogenetic chloride pump, halorhodopsin leads to a secondary redistribution of K+ ions into the cell, through tonically open, "leak" K+ channels. Here we show that this effect is not unique to halorhodopsin but is also seen with activation of another electrogenic ion pump, archaerhodopsin. The two opsins differ however in the size of the rebound rise in extracellular potassium, [K+ ]o , after the end of activation, which is far larger with halorhodopsin than for archaerhodopsin activation. Multiple linear regression modeling indicates that the variance in the postillumination surge in [K+ ]o was explained both by the size of the preceding, illumination-induced drop in [K+ ]o and also by the type of opsin. These data provide additional support for the hypothesis that intense chloride-loading of cells, as occurs naturally following intense bursts of GABAergic synaptic bombardment, or artificially following halorhodopsin activation, is followed by extrusion of both Cl- and K+ coupled together. We discuss this with respect to the pattern of [K+ ]o rise that occurs at the onset of seizure-like events.


Assuntos
Cloretos , Halorrodopsinas , Cloretos/metabolismo , Optogenética , Bombas de Íon
2.
J Neurosci ; 43(5): 685-692, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639898

RESUMO

The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, halorhodopsin. We recorded extracellular K+ concentration ([K+]extra) in neocortical brain slices prepared from young adult mice (both sexes) which express halorhodopsin in pyramidal cells. Strong halorhodopsin activation induced a pronounced drop in [K+]extra that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride cotransporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3 mV) hyperpolarization also of other cells that do not express halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of halorhodopsin causes cortical spreading depolarizations (CSDs), both in vitro and in vivo This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally.SIGNIFICANCE STATEMENT Halorhodopsin is a light-activated electrogenic chloride pump, which has been widely used to inhibit neurons optogenetically. Here, we demonstrate three previously unrecognized consequences of its use: (1) intense activation leads to secondary movement of K+ ions into the cells; (2) the resultant drop in extracellular [K+] reduces excitability also in other, nonexpressing cells; and (3) intense persistent halorhodopsin activation can trigger cortical spreading depolarization (CSD). Halorhodopsin-induced CSDs can occur when neurons are hyperpolarized and extracellular [K+] is low. This contrasts with the most widely used experimental models that trigger CSDs with high [K+]. Both models, however, are consistent with the hypothesis that CSDs arise following net inward ionic movement into the principal neuron population.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Potássio , Masculino , Feminino , Camundongos , Animais , Potássio/metabolismo , Halorrodopsinas/farmacologia , Cloretos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...